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In silico evaluation of TERT inhibition by anticancer drugs
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Abstract The activation of telomerase represents an
early step in carcinogenesis. Increased telomerase ex-
pression in malignant tumors suggests that telomerase
inactivation may represent a potential chemotherapeutic
target. In this work, existing anticancer drugs were
docked against telomerase reverse transcriptase (TERT)
using a Lamarckian genetic algorithm (LGA). Auto-
dock’s scoring function was applied to each of the
molecules in order to identify the inhibitor with the
strongest pharmacological action. The structural insights
provided by this study regarding binding poses and
possible interactions, free energies of binding, and drug
scores aided in the identification of potential inhibitory
compounds. The ranks of the various ligands investigated
were based on the final docked energy values. Among nine
selected compounds, vindesine, temsirolimus, and cyclospor-
ine were found to be more potent TERT inhibitors than the
standard inhibitor, curcumin.
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Introduction

Cancer is a generic term for a group of over 100 chronic
diseases that can affect any part of the body. A defining feature
of cancer is the rapid creation of abnormal cells that grow
beyond their usual boundary and can invade adjoining parts of
the body. The cells may also spread to other organs, a process
referred to as metastasis. It is expected that the annual inci-
dence of cancer will increase steadily to 15 million new cases
in the year 2020 [1]. Thus, the challenge of developing a novel
method to treat cancer is becoming increasingly significant.

A common hallmark of human cancers is the overexpres-
sion of telomerase, a ribonucleoprotein complex that is
responsible for maintaining the length and integrity of chro-
mosome ends [2, 3]. Telomeres are present at the ends of
eukaryotic chromosomes, which consist of an array of tan-
dem repeats of a nucleotide, 5′-TTAGGG-3′ [4]. Telomerase
protects the chromosomes from degradation and repair ac-
tivities, and are therefore essential for ensuring chromosome
stability [5]. Telomerase is responsible for adding telomeric
DNA repeats onto the 3′-ends of chromosomes. It plays a
pivotal role in cellular immortalization and carcinogenesis
[6]. Telomere elongation counterbalances the natural short-
ening of linear chromosomes due to the end-replication
problem, preventing senescence, apoptosis, and genome
instability [7]. Telomere stabilization by telomerase can lead
to unlimited cell proliferation. A deficiency in telomerase
function leads to a limited renewal capacity for highly
proliferative cells. Telomere length deregulation and telo-
merase activation is an early, and perhaps necessary, step in
cancer cell evolution. Previous studies have shown that
telomerase activity is present in 85–90 % of human tumors,
but not in adjacent normal cells, which makes telomerase a
good target not only for cancer diagnosis but also for the
development of novel therapeutic agents [8].
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Telomerase consists of two major subunits: telomer-
ase RNA (TR) and telomerase reverse transcriptase
(TERT), as well as telomerase-associated proteins [9,
10]. In contrast to TR, which is commonly expressed
in both normal tissues (which lack telomerase activity)
and cancers, TERT is highly expressed in tumor cells
[11–13]. The high concentration of TERT in almost all
cancer cells, the dependency of most cancer cells on
TERT activity, and the scarcity of TERT in most normal
cells suggest that TERT would be a good target for
cancer treatment. Therefore, targeting this catalytic sub-
unit represents a promising approach for diminishing telo-
merase function that will probably not cause substantial side
effects on telomerase-negative or somatic cells. The inhibition

of TERT activity by a specific inhibitor induces growth arrest
and apoptosis of cancer cells. Therefore, the discovery and
development of specific TERT inhibitors would provide this
tempting prospect in anticancer research.

Thus, in a continuation of our work on telomerase and
more specifically TERT [14, 15], herein we describe studies
of the molecular docking of currently marketed anticancer
drugs (Fig. 1) onto the crystal structure of TERTwith a view
to evaluating them as TERT inhibitors. The differences in
their binding modes were investigated. Curcumin, a well-
known TERT inhibitor, was employed as a standard
[16–21]. Tribolium castaneum (red flour beetle) TERT was
chosen for the present study, as this domain showed the
highest similarity with human TERT [22–25]. On the basis

Fig. 1 Chemical structures of
the anticancer drugs (ligands)
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of the docking results, the anticancer drugs were ranked to
identify inhibitor(s) specific for the enzyme TERT.

Materials and methods

Preparation of ligand structures

The ligands used in this study were downloaded from Drug-
Bank [26]. The ligands downloaded in MOL/SDF format
were first converted to the Protein Data Bank (PDB) format
using Open Babel [27]. Each ligand was checked for polar
hydrogens and assigned atom types (AD4), partial atomic
charges (with the Gasteiger method), rotatable bonds, and
atomic solvation parameters, and then saved in pdbqt format.
In addition to amide and ring torsions, all of the torsions were
released for flexible ligands. The real challenge during dock-
ing is to use flexible ligand molecules; that is, those with
rotatable torsion angles. The partial charges of the nonpolar
hydrogens were added to the charges of the carbons they were
bonded to, and were deleted afterwards. The atom type for the
aromatic carbons was reassigned so that it would be handled
by the aromatic carbon grid map.

Protein molecule retrieval and preparation

The molecular docking program Autodock 4.0 was used to
determine the potential binding modes between the current-
ly marketed anticancer drugs and the selected enzyme target,
Tribolium castaneum TERT. The Lamarckian genetic algo-
rithm was applied to analyze protein–ligand interactions. A
Solis–Wets local search was performed for energy minimi-
zation. The docked structures of the ligands were generated
after a reasonable number of evaluations.

The crystal structure of Tribolium castaneum TERT
(Fig. 2) was retrieved from the RCSB Protein Data Bank

(PDB ID: 3DU6) [28]. To prepare the enzyme so that it is
suitable for docking studies, the PDB structure 3DU6 was
processed in the graphical software AutoDockTools. Using
the default setting in Autodock Tools, polar hydrogen atoms
were added and fixed, and then the atoms were typed as per
the rules in AutoDock. The Gasteiger charges were calcu-
lated and assigned to the atoms of the structure. The coor-
dinates as well as the charge and solvation information for
the receptor were added and utilized for further docking
studies.

Protein–ligand docking

Grid-box generation

The grid parameter file of the protein was generated using
Auto Dock Tool. A grid box was generated that was large
enough to cover the entire protein binding site and allow all
ligands to move freely. The number of grid points in the x, y
and z directions were 60×60×60 points, and a spacing of
0.375 Å was employed. A three-dimensional grid was created
by the AutoGrid4 algorithm to evaluate the binding energies
between the ligands and the proteins. The Lennard–Jones
parameters 12–10 and 12–6 (supplied with the software pack-
age) were used to model H-bonds and van der Waals inter-
actions, respectively. The distance-dependent dielectric
permittivity ofMehler and Solmajer [29] was used to calculate
the electrostatic grid maps. The center of the ligand in the X-
ray crystal structure was used as the center of the grid box. For
protein structures that did not have ligands in the binding site,
the center of the binding site was estimated from the structure
and taken as the center of the grid box.

Optimal size of the grid box

The grid box covered the entire binding site, and the volume
of the grid box allowed the binding of ligands to extend
beyond the actual binding site, with nonspecific binding into
adjacent pockets. At this stage, the protein was fixed into the
three-dimensional grid, and a probe atom was placed at each
grid point. The affinity and electrostatic potential grid were
calculated for each type of atom in the ligand. The free energy
of a particular ligand configuration was found through the
trilinear interpolation of the affinity values and electrostatic
interactions of the eight grid points surrounding each atom in
the ligand. Reducing the grid-box size would significantly
reduce the CPU time needed for the docking calculation, an
important consideration for drug discovery. The optimal grid-
box size allowed approximately two-thirds of the ligand mol-
ecule to occupy the target binding site, with the remaining
one-third able to bindwith adjacent pockets. Larger grid boxes
provide the optimal balance between the number of screening
ligands and the CPU time required for docking.Fig. 2 High-resolution structure of Tribolium castaneum TERT
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Ligand docking

AutoDock 4.0 and a Lamarckian genetic algorithm (LGA)
[30] were used for protein-fixed ligand-flexible docking
calculations. A series of docking parameters were set up.
Not only the atom types but also the generations and the
number of runs for the LGA were edited and properly
assigned according to the requirements of the Amber force
field. Ten search attempts were performed for each ligand
with a population size of 150 individuals, a maximum
number of 2,500,000 energy evaluations, a mutation rate
of 0.02, a crossover rate of 0.80, and an elitism value of 1.
The maximum number of generations of the LGA run

before termination was 27,000. Other docking parameters
were set to the software’s default values, and 2710 runs were
set. After docking, the ligands were ranked according to
their final docked energies calculated during the docking
procedure from the sum of the intermolecular energy and the
internal energy of the ligand.

Results and discussion

3DU6 and the ligands (curcumin, cyclosporine, cytarabine,
etoposide, methotrexate, uracil mustard, temsirolimus, siro-
limus, vindesine, and mimosine) were subjected to docking

Table 1 Docking results for the
anticancer molecules on 3DU6 Name of ligand Docked energy

(kcal/mol)
Estimated free energy of
binding( kcal/mol)

Rank order

Cyclosporine −10.74 −5.36 3

Cytarabine −7.09 −6.64 6

Etoposide −6.76 −6.32 7

Methotrexate −5.31 −4.17 9

Mimosine −7.71 −7.01 5

Sirolimus −8.33 −6.91 4

Temsirolimus −10.80 −6.98 2

Uracil mustard −5.60 −4.06 8

Vindesine −12.39 −13.3 1

Curcumin −8.62 −5.71

Fig. 3 Modeling the molecular
docking of the ligands with
telomerase (3DU6)
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analysis using Autodock 4.0. According to previous studies
on 3DU6 [23–25], 26 amino acid residues were identified at
the active site: Gly182, Lys189, Arg194, Pro201, Asp202,
Ser203, Ala204, Phe209, Leu220, Tyr224, Lys225, Thr226,
Ser227, Lys249, Ile252, Arg253, Asp254, Gly308, Ala322,
Gly314, Asp325, Ile338, Arg340, Asp344, Asn369, and
Gly391. As most of the amino acid residues at the active
site are hydrophobic, they are the main contributors to the
receptor–ligand interaction. The protein was further manip-
ulated by adding Kollman partial charges and solvent
parameters. Like the protein, the structures of the ligands
were also prepared by deleting their nonpolar hydrogen
atoms and adding Mulliken atomic charges obtained from
Gaussian03. The LGA implemented in the Autodock pro-
gram was applied. The most representative binding modes
of the ten conformations calculated, with at least one hydro-
gen bond to one of the catalytic aspartates, were chosen for
analysis. When the simulations had completed, the docked
structures were analyzed and the interactions were noted.
The final docked energy, hydrogen-bond interactions, and
the binding distance between the donor and acceptor were
measured to identify the best conformers.

After studying several docking poses, the complex
that formed with the least energy and with the top rank
was chosen based on the final docked energy of the
stable conformation. Rank lists were collected from the
docking log file. The minimum free energy of binding
estimated for each docking process was a measure of the
affinity of the inhibitor for the active site of the 3DU6
(Table 1).

The results indicate that some of the docked molecules
exhibited good binding interactions with the active site of
3DU6. The estimated free energy of binding was found
to range from −13.3 to −4.17 kcal mol−1 across all
ligands. The standard drug, curcumin, exhibited a docked
energy of −8.62 kcal mol−1. Vindesine, with its relatively
low docked energy (−12.39 kcal mol−1), was found to exhibit
a strong interaction with 3DU6, and was found to be the most
potent molecule (top ranked) among all the ligands. This
molecule displayed two hydrogen-bond interactions: one at
the residue Asp344 and the other at Cys390 (Fig. 3a), in
addition to hydrophobic, van der Waals, and π–π interactions.
After vindesine, temsirolimus (Fig. 3b), with a docked energy
of −10.8 kcal mol−1, and cyclosporine (Fig. 3c), with a docked
energy of −10.74 kcal mol−1, exhibited the next highest inter-
action energies with 3DU6, and were thus ranked second and
third, respectively. These three molecules were found to be
more potent than curcumin, as they were found to bind 3DU6
(TERT) more effectively than curcumin (Fig. 3d) and thus to
inhibit it in the order vindesine > temsirolimus > cyclosporine.
Further, sirolimus was found to be almost as potent as curcu-
min, with a docked energy of −8.33 kcal mol−1. The other
molecules were also ranked according to their docked

energies, but were found to be less potent than the curcumin
standard.

Conclusions

A total of nine drug molecules were evaluated for their
TERT inhibitory activities. Among them, vindesine, temsir-
olimus, and cyclosporine were found to be more potent than
the standard inhibitor, curcumin. The successful location of
global minima for the TERT protein by genetic algorithms
may lead to significant changes in the way in which drug
development is performed. The continued development of
novel drugs will likely be at the forefront of cancer therapy,
and this work is intended to provide a synopsis of anti-
TERT approaches that may revolutionize cancer therapeu-
tics in the future. Hence, potential inhibitors of TERT and
valuable anticancer agents with higher binding affinities and
bioavailability but less toxicity could be obtained by opti-
mizing the structures of these drugs in this manner. Further,
this work could be extended to perform an experimental
study of how these drugs inhibit TERT protein and hence
reduce telomere elongation and arrest the cell cycle at dif-
ferent phases in humans.
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